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Abstract. Owing to a lack of appropriate therapeutic regimens, prostate cancer (PC) is a global health 

concern with a high incidence and mortality rate in elderly men. Combination treatment seems to have 

the highest clinical benefit and avoids unwanted side effects. The current study focused on the 

chemotherapeutic efficacy of Zoledronic acid (ZA) in combination with 5-fluorouracil (5-FU) or 

Flutamide on prostate cancer cells, as well as its effect on apoptosis. The MTT assay was used to 

determine the cytotoxic effect of Zoledronic acid (ZA), 5-FU, and flutamide on PC-3 and DU-145 cells, 

as well as the combined therapy of ZA with 5-FU or flutamide. Additionally, immunofluorescence 

staining analysis was used to assess changes in Bcl-2 and p53 expression. Furthermore, the western 

blotting method was extensively used to evaluate Bax, caspase 3, and cyclin D1. Furthermore, 

quantitative real-time polymerase chain reaction (qRT-PCR) was applied to determine the relative 

expression of miRNA-382 (miR-382) and miRNA-18a (miR-18a). Instead of (13.47, 8.23, and 9.42 μM) 

for PC-3 or (38.77, 17.6, and 8.47 μM) for DU145 cells, the combination therapy improved cytotoxicity 

with doses approximately half of IC50 (6.74, 4.12, and 7.07 μM) in PC-3 and (19.38, 8.8, and 6.33 μM) 

in DU145 cells for ZA, 5-FU, and flutamide, respectively. When compared to a single therapy, the 

combination therapy significantly up-regulated the pro-apoptotic Bax, cleaved caspase 3 and p53 levels 

while down-regulated the cyclin D1 and Bcl-2 expression. In addition, the combination therapy was 

linked to changes in miR-382 and miR-18a expression. Our findings suggest that combining ZA with 5-

FU or flutamide improves chemotherapeutic efficacy against prostate cancer cells, at least in part by 

encouraging apoptosis and modulating miRNA expression, especially miR-382 and miR-18a. 

 

Keywords: 5-Fluorouracil (5-FU), Flutamide, miRNAs, PC-3, Prostate cancer, Zoledronic acid 

 

 

1.Introduction 
Prostate cancer (PC) a form of famous cancers in elder men, also act as the second prominent cause 

of cancer-related mortality [1]. Despite recent advances in cancer therapies, PC remains an incurable 

disease that relapses [2]. PC's high prevalence, incurability, relapse, and mortality are attributed to a lack 

of adequate treatment, which is closely related to the genetics and epigenetics of the disease [3]. 

Zoledronic acid (ZA) is a highly active bisphosphonate containing nitrogen (BPs) and was approved 

by the FDA in 2002 for the treatment of solid tumor bone metastases [4, 5]. Furthermore, new evidence 

suggests that BPs treatment, especially zoledronate therapy, is linked to changes in miRNA profile 

expression [6]. In addition, BPs are often combined with other chemotherapeutic drugs to achieve a 

synergistic effect with minimal side effects [7]. 

Anti-androgens including flutamide and the thymidylate synthase inhibitor 5-fluorouracil (5-FU) are 

normal treatments for advanced PC, despite health concerns and efficacy issues [8-10] .  
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Combining two or more chemotherapeutic drugs, in particular, aims to target cancer-inducing or cell-

assisting pathways, which are a keystone in cancer therapy. In addition, the combination procedure 

allows for the use of chemotherapy at low doses, which may reduce the side effects often associated with 

high doses [11, 12]. Consequently, new PC treatment combinations must be used, and novel synergistic, 

beneficial combinations must be created to improve PC management.  

Bisphosphonates, such as ZA, were previously used in combination with other chemotherapeutic 

drugs to achieve a synergistic effect with few side effects; however, its potential role in the control of 

miRNAs is still not fully understood, its potential effect in the regulation of miRNAs is a goal to improve 

chemotherapeutic efficiency against PC. 

MiRNAs are concerned to control the expression of upwards of 70% of the human genome, and 

dysregulation of miRNA has been linked to tumor development [13, 14]. MiRNAs have either oncogenic 

or tumor-suppressive effects by controlling genes involved in proliferation, differentiation, and apoptosis 

[15, 16].  

MiRNAs such as miRNA-382 (miR-382) and miRNA-18a (miR-18a) are engaged in the control of 

PC [17]. PC cell proliferation, migration, and tumor growth are all inhibited by MiR-382 [18]. Several 

shreds of evidence suggested that miR-18a is an oncogene that plays a role in the progression of PC. 

When compared with normal people and patients with benign prostatic hyperplasia, MiR-18a is 

abundantly expressed in the blood patients of PC [19].  

As a result, we sought to investigate how ZA affected the cytotoxic effect of 5-FU or flutamide on 

prostate cancer cells, as well as how it affected apoptosis. 

 

2.Materials and methods 
2.1. Chemicals 

Drugs, reagents, and antibodies which used in this research were purchased from different 

companies, Flutamide was kindly provided from (Sigma Pharmaceutical Industry; Egypt), ZA was 

kindly provided from (Pharco Pharmaceuticals; Egypt), and 5-FU was purchased from (Sandoz Pharma; 

Canada). RPMI-1640 media complemented by L-glutamine, fetal bovine serum (FBS), trypsin EDTA, 

phosphate-buffered saline (PBS), and penicillin/streptomycin solution for PC-3 and DU-145 cell 

lines were acquired from Gibco (Thermo Fischer Scientific, Inc., USA). MTT reagent: 3′-(4, 5 dimethyl-

thiazol-2-yl)-2, 5-diphenyl tetrazolium bromide, chloroform, phenol, isoamyl, Tris, and ethylene-

diaminetetraacetic acid (EDTA) were provided from (Sigma-Aldrich; Germany). Bcl-2 antibodies 

(catalogue no. sc-7382), p53 (catalogue no. sc-393031), cyclin D1 (catalog no. sc-8396), and Bax (B-9) 

(catalogue no. sc-7480) were acquired from (Santa Cruz Biotechnology, USA). While the caspase 3 

(cleaved) (catalogue no. AB3623) from (Merck KGaA, Germany). Radio immune precipitation assay 

lysis buffer (RIPA buffer) [1% Triton X-100, 150 mM NaCl, 25 mM Tris-HCl pH 7.6, 0.1% SDS, 5 mM 

EDTA, 1% sodium deoxycholate, protease inhibitors] was provided from (Sigma-Aldrich, Milan, Italy). 

Most of the other substances were of the greatest analytical standard. Completed dilutions were prepared 

instantaneously before use, and current stock solutions for each experiment were prepared.  

 

2.2. Cell culture  

PC-3 and DU-145 human prostate cancer cell lines were purchased from the American Type Culture 

Collection (ATCC, Rockville, USA). Cells were grown in polystyrene flasks (75 cm2) as monolayer 

adhesives in a serum-containing medium, RPMI 1640 supplemented with 1% penicillin-streptomycin 

10% heat-inactivated fetal bovine serum (FBS), 1% L-glutamine and incubated at 37°C in a humidified 

atmosphere with 5% CO2. Morphological shape and the cell growth monitoring until they reached 90% 

of the confluence, after which the cells were easily passed.  

 

2.3. Cell viability assay          

MTT assay was used to evaluate the cytotoxic activity of ZA, 5-FU, Flutamide,  ZA/5-FU and 

ZA/Flutamide in PC-3 and DU-145 cell lines [20]. We plated 5000 cells/well in a 96-well plate and were 
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grown for 24 h after being treated with media containing concentrations (0.1, 1, 10, 100 and 1000μM) 

of ZA, 5-FU, and Flutamide, and incubated for 48h at 37°C, 5% CO2. In combination therapy, the 

fractional design was performed by combining/mixing different concentrations (¼, ½ and ¾ IC50) for 

each drug (2.06, 4.12, and 6.17 μM) of 5-FU or (2.36, 4.71, and 7.07 μM) of flutamide with various 

concentrations of ZA (3.37, 6.74, and 10.1 μM) for PC-3 cells, while for DU-145 cells the fractional 

design was carried out by combining various concentrations (4.40, 8.80, and 13.20 μM) of 5-FU or (2.11, 

4.23, and 6.33 μM) of flutamide with various concentrations of ZA (9.69, 19.38, and 29.07 μM) for 48 

h. Upon treatment, the media was removed, and 100 μL of yellow MTT has been added to every well 

and incubated at room temperature for 4 h. To dissolve the subsequent formazan drug, 100 μL of 

dimethyl sulfoxide (DMSO) buffer was made, and absorbance was measured at 570 nm using the ELISA 

microplate reader (Epoc-2 C micro-plate reader, USA). The percentage of control cells is stated as a 

percentage of the total number of cells (100% of cell viability). The combination index (CI) for the level 

of interaction between ZA with either 5-FU or flutamide on PC-3 cells and DU-145 cells was also 

determined using CompuSyn software. CI < 1 means synergism, CI > 1 means antagonism, and CI=1 

means additive. 

After determination of IC50 and calculation of CI, cells were divided into 6 groups: 

 
Groups PC-3 Cells DU-145 Cells 

Group 1 Control untreated cells Control untreated cells 

Group 2 Treated cells with ZA (6.74 μM). Treated cells with ZA (19.38μM). 

Group 3 Treated cells with 5-FU (4.12 μM). Treated cells with 5-FU (8.80 μM). 

Group 4 Treated cells with Flutamide (7.07μM). Treated cells with Flutamide (6.33 μM). 

Group 5 ZA (6.74 μM) + 5-FU (4.12 μM). ZA (19.38μM) + 5-FU (8.80μM). 

Group 6 ZA (6.74 μM) + flutamide (7.07μM). ZA (19.38 μM) + flutamide (6.33μM). 

 

In combined therapy, PC-3 and DU-145 cells were treated with the suitable concentration of ZA drug 

firstly for one hour before obtaining the matching concentration of 5-FU or flutamide was placed and 

incubated for 2 days at 37 °C, 5% CO2. 

 

2.4. Western blot analysis 

PC-3 and DU-145 cells were incubated in six-well plates (250×103 cells/ well) for 24 h, and then 

treated with ZA for 1h before receiving the matching concentration of 5-FU or flutamide was placed and 

incubated for 48 h at °C, 5% CO2. The cells were then trypsinized, separated by centrifugation, obtained 

as pellets, and rinsed three times with ice-cold PBS. After that, the cells pellet was lysed using RIPA 

lysis buffer on ice for 30 min. Then, the blend was sonicated, centrifugated, the supernatant was collected 

and stored at -80°C. The protein concentration of each cell lysate was determined by Biuret method [21, 

22]. Protein levels of cyclin D1, Bax, and active caspase 3 in PC-3 and DU-145 cell lysate were evaluated 

using the relevant mouse monoclonal and rabbit monoclonal antibodies following the previously 

published methods [23, 24]. In Brief, the proteins in each cell lysate were denatured at 95°C in 2× 

Laemmli buffer containing 5% β-mercaptoethanol for 10 min. Afterward, SDS–PAGE electrophoresis 

was performed by inserting 50 μg of denatured protein per lane at 100 V through stacking gel (6%) 

followed by 125 V through resolving gel (10%) for about 2 h and blotted to the PVDF membrane using 

cleaver scientific® semidry transfer unit for 25 min. Immunoblotting was accomplished by incubating 

the PVDF membrane in a TBS buffer that containing 0.1% Tween and 5% defatted milk (TBST) for 1 

h at 4°C. After that, membrane was incubated with rabbit monoclonal anti-caspase 3 and mouse 

monoclonal anti-Bax, and anti-cyclin D1 as primary antibodies at 1:500 dilutions for 24 h at 4 °C. Then 

washed with TBST buffer and incubated at 37°C for 1 h with goat anti-rabbit and goat anti-mouse 

alkaline phosphatase-conjugated secondary antibodies (Novus Biologicals, LLC, USA) in a dilution of 

1:5000. The incubated membrane was washed 4 times with TBST, then the membrane-bound antibody 

was detected using BCIP/NBT detection Kit (Genemed Biotechnologies, USA), and statistical analysis 

were performed using Image J/NIH quantification software (National Institute of mental health, USA). 

Approximately equal protein loading for every lane was revealed by stripping followed by re-blotting at 
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4°C for each membrane against anti-β-actin mouse monoclonal antibody (Santa Cruz Biotechnology, 

USA) at a dilution of 1:500. 

 

2.5. Immunofluorescence assay  

The expression of the Bcl-2 protein and the p53 tumor suppressor were evaluated by immuno-

fluorescence assay on PC-3 cells. Firstly, cells were seeded on cover slips 6-well plates and allowed to 

treat with chemotherapy drugs and combinations as indicated above, while control cells were incubated 

in drug-free media. After 2 days, the media were discarded, and the cells washed 3 times with Phosphate 

Buffer Saline (PBS). Cell fixation was done with 4% paraformaldehyde for 10 min and washed 3 times 

with PBS. Blocking cells for 15 min at room temperature with block buffer then incubated as a primary 

antibody with mouse monoclonal anti-Bcl-2 and anti-p53 (Santa Cruz Biotechnology, Inc., USA) at 

1:500 dilutions for 2 h at 37°C. After the primary antibody, cells were rinsed 3 times with PBS and then 

incubated with secondary antibody goat anti-mouse Alexa flour 488 at room temperature in the dark for 

1 h. After washing in PBS, nuclei were stained by 4', 6-Diamidino-2 Phenylindole, Dihydrochloride 

(DAPI) for 5 min, then excess DAPI was washed out using PBS. Slides were consistent in fluoromount 

G and coverslips were inverted over the mounted slides. Target antigen was visualized using LEICA 

fluorescence microscope (model: Leica DM5500 B from Leica Microsystems, USA) under red, blue, 

and green channels. 

 Fluorometric analysis: for statistical analysis, the microscopic field fluorometric intensity was 

measured using Image J/NIH software (National Institute of mental health, USA) and represented as a 

ratio green (Antibody fluorescence intensity) / blue (DAPI nucleus staining). 

 

2.6. Assessment of miRNAs expression 

2.6.1. Total RNA isolation 

Standard TRIzol® Reagent Extraction Method has been utilized to isolate total RNA from prostate 

cancer PC-3 and DU-145 cells (cat#15596-026, Invitrogen, Germany). In a brief period, centrifugation 

was carried out to harvesting the cells and then homogenized in 1 mL of TRIzol® Reagent. After that, 

homogenized samples were brooded for 15 min. at 37°C, and 0.2 mL of chloroform per 1 mL of TRIzol® 

Reagent was added. After that, the samples vortexed and centrifuged repeatedly to produce three 

separated layers. The RNA remained alone during the aqueous phase. The RNA was precipitated 

by homogeneous mixing with isopropyl alcohol from this phase. 1 ml of 70% ethanol was used to wash 

the RNA pellets. The samples were mixed with vortexing and centrifuged at 4°C at 5 min. Then 

evacuated the supernatant and the pellets of RNA were air-dried for 15 min. RNA was dispersed in 

diethylpyrocarbonate-treated water bypassing the solution through the tip of the pipette. To complete 

the digestion of DNA residues, the total RNA must be treated with 1 U of RQ1 RNAse-free DNAse 

(Invitrogen, Germany), re-suspended in DEPC-treated water. Purity and the quantity of RNA were 

measured as optical density (OD) 260/280 by Thermo Scientific NanoDrop™ 1000 Spectrophotometer 

V3.7. Aliquots were used directly for reverse transcription (RT), otherwise stored at -80 °C. 

 

2.6.2. Reverse transcription (RT) reaction 

The overall RNA isolated from prostate cancer PC-3 and DU-145 cells was switch transcribed into 

the corresponding cDNA in a total volume of 20 μL using Revert Aid TM First Strand cDNA Synthesis 

Kit (MBI Fermentas, Germany). After that, incubation occurred at 25°C for 15 min, preceded by 1 h at 

42°C and stopped by heating at 99°C for 5 min. Hence, tubes of the response containing RT 

arrangements were cooled directly in an ice apartment until they were utilized for DNA amplification 

by RT-PCR. 

 

2.6.3. Quantitative real-time PCR (qRT-RPC)          

The studied miRNAs expressions were assessed by using StepOne™ real-time PCR System from 

Applied Biosystems (Thermo Fisher Scientific, Waltham, MA USA). The miScript SYBR Green PCR 
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kit (Qiagen GmbH) was utilized to perform the amplifications. PCR conditions were adjusted as the 

following: starting enactment of the polymerase at 95°C for 15 min, taken after by 40 cycles of 94°C for 

20 s, 55°C for 35 s and, 70°C for 35 s. RNU6B was used as a positive control gene for normalize our 

results. The comparative cycle threshold was used to evaluate the relative quantification (RQ) of 

miRNAs, with RQ = 2−ΔΔCt. 

 

Statistical analysis 

 All graphics, data, and calculations of IC50 were done using GraphPad Prism version 8.0.1, 2018. 

Mean ± standard deviation (χ¯± SD) was used to express all data, of at least three independent repeats 

(n=3). The statistical significance variables among the various treated groups were assessed by One-way 

ANOVA continued by Tukey's post hoc tests. P < 0.05 was considered significant. 

 

3. Results and discussions 
3.1. Results 

3.1.1. Zoledronic acid, 5-FU and flutamide decreased PC-3 and DU-145 cell viability in a 

concentration-dependent manner 

Treatment of PC-3 and DU-145 cells with ZA, 5-FU, and flutamide gradual concentrations (0.1, 1, 

10,100 and 1000 μM) resulted in decrease of cell viability in a concentration-dependent manner. IC50 

values in PC-3 cells were (13.47, 8.23, and 9.42 μM) and in DU-145 cells were (38.77, 17.6, and 8.47 

μM) for ZA, 5-FU, and flutamide respectively (Figure 1). 

 
Figure 1. In a concentration-dependent manner, zoledronic acid, 5-FU, and flutamide reduced PC-3 

and DU-145 cell viability. Our researched prostate cancer cells were treated for 48 hours with 

increasing concentrations of ZA, 5-FU, and flutamide (0. 1, 1, 10, 100, and 1000 μ M), and cell 

viability was calculated using the MTT method. The results were expressed as χ¯± SD of three 

separate repeats (n=3). To assess statistical significance, a one-way ANOVA was used, followed by 

Tukey's post hoc multiple comparison tests. a: significant from control untreated group, b: significant 

from 0.1μM concentration, c: significant from 1μM concentration, d: significant from 10 μM 

concentration, e:  significant from 100 μM concentration, at P < 0.05 
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3.1.2. Zoledronic acid synergistically enhanced the cytotoxic effects of 5-FU and flutamide against 

PC-3 and DU-145 cells   

Combination therapy (½ IC50 of ZA+ ½ IC50 of 5-FU and ½ IC50 of ZA+ ¾ IC50 of flutamide) 

improved the cytotoxicity when compared to a single treatment. CI for the interactions between ZA 

either with 5-FU or flutamide on PC-3 and DU-145 cells were <1 indicating a synergistic interaction 

(Table 1).  

 

Table 1. Combination index for the interaction after ZA co-treatment either with 5-FU  

or flutamide on PC-3 and DU-145 cell viability using non-constant ratio model 
PC-3 cells (μM) DU-145 cells (μM) 

ZA 5-FU 

 

CI ZA Fluta

mide 

CI ZA 5-FU 

 

CI ZA Flutami

de 

CI 

3.37 2.06 0.39 3.37 2.36 0.23 9.69 4.40 1.40 9.69 2.11 1.53 

3.37 4.12 0.32 3.37 4.71 0.20 9.69 8.80 0.92 9.69 4.23 0.75 

3.37 6.17 0.24 3.37 7.07 0.17 9.69 13.20 0.94 9.69 6.33 0.58 

6.74 2.06 0.32 6.74 2.36 0.20 19.38 4.40 0.92 19.38 2.11 0.61 

6.74 4.12 0.20 6.74 4.71 0.16 19.38 8.80 0.67 19.38 4.23 0.49 

6.74 6.17 0.17 6.74 7.07 0.09 19.38 13.20 0.68 19.38 6.33 0.07 

10.1 2.06 0.16 10.1 2.36 0.15 29.07 4.40 0.46 29.07 2.11 0.44 

10.1 4.12 0.11 10.1 4.71 0.11 29.07 8.80 0.38 29.07 4.23 0.20 

10.1 6.17 0.06 10.1 7.07 0.05 29.07 13.20 0.28 29.07 6.33 0.02 

 

The most effective combination of lower CI was 4.12 μM of 5-FU or 7.07 μM of flutamide with 6.74 

μM of ZA for PC-3 cells, while the most effective combinations with lower CI were 8.80 μM of 5-FU 

or 6.33 μM of flutamide with 19.38 μM of ZA for DU-145 cells. Therefore, these combinations were 

used in all further experiments (Figure 2, 3 and 4). 

 
Figure 2. Using a non-constant ratio design, a combination index plotting of ZA combined therapy 

with 5-FU or flutamide on PC-3 and DU-145 cell viability was established. PC-3 cells were treated 

with a combination of (3.37, 6.74, 10.1μM) of ZA either with (A) (2.06, 4.12, 6.17 μM) of 5-FU or (B) 

(2.36, 4.71, 7.07 μM) of flutamide, while DU-145 cells were treated with (9.69, 19.38, 29.07 μM) of 

ZA either with (C) (4.4, 8.8, 13.2 μM) of 5-FU or (D) (2.11, 4.23, 6.33 μM) of flutamide for 48 h. 

CompuSyn software was used to measure the combination index (CI) for the degree of interaction 

between ZA and 5-FU or flutamide on the previous cancer cells. CI for these results was < 1 

suggesting a synergistic effect. CI: the combination index, Fa: the fractional effect 
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Figure 3. The cytotoxic activity of 5-FU and flutamide instead of PC-3 were enhanced by zoledronic 

acid in a synergistic manner. PC-3 cells were treated for 48 hours by (3.37, 6.74, and 10.1 μM) of ZA 

either with (A) (2.06, 4.12, and 6.17 μM) of 5-FU or (B) with 4.12 μM of 5-FU, or (C) with (2.36, 

4.71, and 7.07 μM) of flutamide or (D) with 7.07 μM of flutamide, then using MTT to assess the cell 

viability, and calculated the IC 50 of each combination. Our results were expressed as χ¯± SD of three 

separate repeats (n=3). To assess statistical significance, a one-way ANOVA was used, followed by 

Tukey's post hoc multiple comparison tests. a:  significant from the control untreated group, b: 

significant from 5-FU group alone or flutamide group alone, c: significant from the related 

concentration of ZA group at P < 0.05 
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Figure 4. Zoledronic acid increased the cytotoxic activity of 5-FU and flutamide against DU-145 

 in a synergistic manner. DU-145 cells were treated for 48 hours by (9.69, 19.38, and 29.07μM) of ZA 

either with (A) (4.40, 8.80, and 13.20 μM) of 5-FU or (B) with 8.80 μM of 5-FU, or (C) with (2.11, 

4.23, and 6.33 μM) of flutamide or (D) with 6.33μM of flutamide, then using MTT to assess the cell 

viability, and calculated the IC 50 of each combination. Our results were expressed as χ¯± SD of three 

individual repeats (n=3). To assess statistical significance, a one-way ANOVA was used, followed by 

Tukey's post hoc multiple comparison tests. a:  significant from the control untreated group, b: 

significant from 5-FU group alone or flutamide group alone, c: significant from the related 

concentration of ZA group at P < 0.05 

 

3.1.3. Zoledronic acid co-treatment with 5-FU or flutamide increased caspase 3 and Bax 

expressions, and down-regulated the expression of cell cycle regulatory protein cyclin D1 on PC-3 

and DU-145 cells 

The protein expression of Bax, cleaved caspase-3 and cyclin D1 was evaluated by western blot 

analysis. Our results showed that combined therapy from both (ZA/5-FU and ZA/Flutamide) 

cooperatively increased pro-apoptotic proteins caspase 3 and Bax expressions, while decreased cell cycle 

regulatory protein cyclin D1 expression in compared to every single drug, highlighting the utility and 

synergistic value of ZA co-treatment (Figure 5 and 6).  
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Figure 5. In PC-3 cells, zoledronic acid co-treatment with 5-FU or flutamide increased Bax and 

caspase 3 expression levels while reducing the expression of cyclin D1. The previous proteins 

expressions were examined by western blotting technique in PC-3 cells of various groups. PC-3 cells 

were treated with ZA (6.74 μM), either with 5-FU (4.12 μM) or flutamide (7.07 μM), combined ZA 

either with 5-FU or flutamide for 48h. β-actin was used as the internal control. Graphical results 

expressed as χ¯± SD of three independent repeats (n=3). Statistical significance evaluated by One-way 

ANOVA followed by Tukey's post hoc multiple comparison tests. a: significant from the control 

untreated group at P < 0.05 
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Figure 6. In DU-145 cells, zoledronic acid co-treatment with 5-FU or flutamide increased level of 

expressions of caspase 3 and Bax while reducing the expression of the cell cycle regulator cyclin D1. 

The previous proteins expressions were examined by western blotting technique in DU-145 cells of 

different forms. DU-145 cells were treated with ZA (19.38μM) either with 5-FU (8.80 μM) or 

flutamide (6.33 μM), combined ZA either with 5-FU or flutamide for 48h. β-actin act as the internal 

control. Graphical results expressed as χ¯± SD of three independent repeats (n=3). Statistical 

significance evaluated by One-way ANOVA followed by Tukey's post hoc multiple comparison tests. 

a: significant from the control untreated group at P < 0.05 

 

 

3.1.4. Combined ZA either with 5-FU or flutamide on PC-3 reduced Bcl-2 and enhanced p53 

expressions 

The expression of Bcl-2 was reduced after treatment when compared to untreated control cells. 

Flutamide-treated cells showed a significantly lower difference in Bcl-2 expression compared to ZA and 

5-FU treated cells. Both combinations showed significantly lower levels of Bcl-2 compared to single 

drug-treated cells, concluding a remarkable decrease in the antiapoptotic protein (Figure 7). On the 

otherwise, p53 levels were elevated after treatment and there were significant differences in ZA-treated 

cells as compared to 5-FU and Flutamide-treated cells, both combinations showed significantly higher 

levels of p53 compared to single drug-treated cells indicating an enhancement in the tumor suppressor 

level (Figure 7).  
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Figure 7. Immunofluorescence staining reveals the expression of Bcl2 (A) and p53 (B) in PC-3 with 

single and combined drugs. When compared to untreated control cells, Bcl-2 expression was decreased 

after treatment; however, both combinations showed elevated levels of p53 expression when compared 

to single drug-treated cells. Blue (DAPI): nucleus; green: Bcl2 or p53 respectively. a: significant from 

control untreated group b: significant from ZA. c: significant from 5-FU. d: significant from Flutamide 

at p < 0.05. Using mean ± standard deviation (χ¯± SD) to expressed data 

 

3.1.5. Combination of ZA with 5-FU and flutamide was associated with modulation in MiRNAs 

expressions in PC-3 cells and DU-145 cells 

To evaluate the probable mechanism by which these enhancements in the cytotoxic effect of 5-FU 

and flutamide after co-treatment with ZA mediated in part through modulation of miRNAs expression, 

Oncogenic miR-18a and the tumor suppressor miR-382 expression levels were assessed by qRT-PCR 

using RNU6B as an endogenous control. In PC-3 cells, the oncogenic miR-18a was down-regulated after  
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treatment with ZA, 5-FU, Flutamide, ZA/5-FU, and ZA/Flutamide by 4.50, 4.17, 3.60, 2.90, and 2.40 

folds respectively as compared to control untreated cells. At the level of the combination, both 

combinations ZA with 5-FU or flutamide showed significant downregulation in the oncogenic miR-18a 

expression when compared to single drug-treated cells. On the other hand, miR-382 was up-regulated 

after treatment with ZA, 5-FU, Flutamide, ZA/5-FU, and ZA/Flutamide by 1.92, 2.30, 2.83, 3.06, and 

3.53 folds respectively when compared to control untreated cells. At the level of the combination, both 

combinations ZA with 5-FU or flutamide showed a significant increase in miR-382 expression when 

compared to single drug-treated cells (Figure 8). Also, in DU-145 cells we found down-regulation for 

miR-18a expression after treatment with ZA, 5-FU, Flutamide, ZA/5-FU, and ZA/Flutamide by 6.83, 

6.18, 4.59, 3.14, and 2.89 folds respectively as compared to control cells. At the level of the combination, 

both combinations ZA with 5-FU or flutamide showed significant down-regulation in the oncogenic 

miR-18a expression when compared to single drug-treated cells. While miR-382 was up-regulated after 

treatment with ZA, 5-FU, Flutamide, ZA/5-FU, and ZA/Flutamide by 2.90, 3.29, 3.81, 5, and 5.50 folds 

respectively when compared to control cells. At the level of the combination, both combinations ZA 

with 5-FU or flutamide showed a significant increase in miR-382 expression when compared to single 

drug-treated cells (Figure 9). These results showed that enhancement in the cytotoxic effect of 5-FU and 

flutamide after co-treatment with ZA may be mediated at least in part through regulation of miRNAs 

expression. Particularly decrease in the expression level of miR-18a and increase in the expression of 

miR-382. Our results can be summarized as shown in (Figure 10).   

 

 
 

Figure 8. Using RNU6B as an endogenous control, co-treatment of ZA with 5-FU or flutamide 

regulated MiRNA expression in PC-3 cells by qRT-PCR. Decreased expression of miR-18a and 

increased expression of miR-382 in (PC-3) cells after treatment with half maximal inhibitory 

concentration (IC50) of ZA, 5-FU, Flutamide, and combined ZA with 5-FU or Flutamide. a: significant 

from control group and b: significant from ZA at p < 0.05. Our data expressed as (χ¯± SD) 
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Figure 9. Using RNU6B as an endogenous control, co-treatment of ZA with 5-FU or flutamide 

regulated MiRNA expression in DU-145 cells by qRT-PCR. Decreased of miR-18a and enhanced of 

miR-382 expressions in (DU-145) after treatment with half maximal inhibitory concentration (IC50) of 

ZA, 5-FU, Flutamide, and combined ZA with 5-FU or Flutamide. a: significant from control untreated 

group and b: significant from ZA at p < 0.05.  Our data expressed as (χ¯± SD) 

 

 
Figure 10. The following is a diagram of our observations. Treatment of prostate cancer PC-3 and 

DU-145 cells with ZA and 5-FU or flutamide resulted in up-regulation of miR-18a and miR-382, 

which in turn may be incorporated in decreased cyclin D1 and Bcl-2 expression while increasing Bax, 

caspase 3, and p53 expression, triggering the arrest of cell cycle and increased apoptosis. As a result, 

cell proliferation was reduced while cell death was increased 
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3.2. Discussions 

MiRNAs regulate apoptosis, cell growth and proliferation, autophagy, invasion, metastasis, and the 

epithelial-to-mesenchymal transition (EMT) in PC, and thus play an important role in cancer 

progression. In PC, evidence suggests that various miRNAs play a role in cancer initiation, progression, 

and metastasis by functioning as anti-neoplastic tumor suppressors (down-regulated) or oncogenic 

oncomiRs (up-regulated) [25]. Furthermore, miRNAs play an indispensable role in therapy response. As 

a result, controlling miRNAs, which are deregulated in cancer, may be a promising strategy for 

enhancing the anti-androgen flutamide and the chemotherapeutic 5-FU's chemotherapeutic efficacy [26, 

27]. In PC therapy, innovative therapeutic techniques and/or novel adjuvant drugs are critically needed 

[11] 

For clinical applications, a drug combination has been recommended that can not only enhance 

therapeutic effects but also minimize chemotherapy clinical doses, thus reducing toxic side effects [7]. 

To our knowledge, this is the first research to study the effects of combining ZA as a BPs that plays 

a role in miRNA profile expression with 5-FU or flutamide, two of the most widely used chemo-

therapeutic agents for PC. According to our findings, the viability of prostate cancer PC-3 and DU-145 

cells is decreased by ZA, 5-FU, or flutamide in a dose-dependent manner. 

This result was more pronounced in a synergistic manner after ZA was combined with 5-FU or 

flutamide, suggesting that ZA in combination with 5-FU or flutamide could be useful against PC. These 

findings corroborated a previous study that found that treating PC-3 cells with a combination of 

Thymoquinone and ZA resulted in substantial synergistic cytotoxic activity [28]. In PC-3 and DU-145 

cells, a combination of ZA with the serine/threonine protein phosphatase inhibitors; calyculin A and 

okadaic acid had synergistic cytotoxic and apoptotic effects [29]. 

Furthermore, our previous cancer cells when treated with ZA in combination with 5-FU or flutamide 

resulted in lower expressions of Bcl-2 and cyclin D1, as well as higher expressions of pro-apoptotic 

caspase 3 and Bax than in single drug-treated and untreated cells. 

These findings showed that after 5-FU or flutamide co-treatment with ZA, there was a substantial 

increase in chemotherapeutic efficiency and increased PC-3 and DU-145 cell death, as well as coupled 

with an increase in apoptotic protein markers and suppress in anti-apoptotic ones. 

Co-treatment also increased the tumor suppressor p53 and decreased the cell cycle regulator cyclin 

D1, demonstrating the possible importance of these adjuvant therapies in cancer progression regulation. 

When compared to single-drug treatment of PC3 cells, findings from other studies showed that the 

combination of 5-FU and rutin significantly suppressed Bcl-2 protein and enhanced p53 expression [30]. 

In human colon cancer cells, the combination of rutin and hypersoide also decreased Bcl-2 expression 

[31]. 

 Furthermore, we investigated the effect of chemotherapeutic drugs, ZA, 5-FU, flutamide alone 

and/or in combined forms on the expression of miR-382 and miR-18a in PC-3 and DU-145 cells to 

establish the probable mechanism by which the synergistic increase in the cytotoxic efficiency of 5-FU, 

flutamide after co-treatment with ZA against PC occurs. Our findings revealed that treatment with ZA, 

Flutamide, and 5-FU individually resulted in over-expression of miR-382, an effect that was exacerbated 

after co-treatment, demonstrating the synergistic effect of ZA with 5-FU or Flutamide. This is consistent 

with previous studies that found tumor suppressor microRNAs were up-regulated after chemotherapy in 

various cancer cells, such as miR-16 in colorectal cancer cells and MCF-7 after 5-FU and irinotecan 

treatment [32, 33]. On the other hand, the oncogenic miR 18a, a widely expressed miRNA in PC-3 and 

DU145, was down-expressed after treatment with single drugs and even more so after ZA co-treatment 

with 5-FU or flutamide. Other studies have found that oncogenic miRNA levels are decreased after 

chemotherapeutic treatment [32, 34]. These findings suggest that ZA enhances the cytotoxic activity of 

flutamide and 5-FU in PC in part due to its effect on altered miRNAs. 

Despite this, there are some pitfalls in our study. For example, we should investigate the effects of 

our chosen combinations on various types of PC cells, more miRNAs, and the effectiveness of these 

combinations on cell cycle factors, as well as in vivo studies. 
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4. Conclusions  
The enhancement in the cytotoxic effect of flutamide and 5-FU after combined treatment with ZA is 

mediated at least in part through regulation of the expression levels of altered miRNAs in PC. 

Particularly the oncogenic miR-18a and the tumor suppressor miR-382, their expression levels are 

affected by the chemotherapeutic co-treatment by down-regulation or up-regulation, respectively. 

Finally, we can conclude that when ZA is combined with 5-FU or Flutamide, the therapeutic results are 

synergistic and superior to single-drug therapy. Low doses and consequently low side effects make these 

combinations more effective. The increased cytotoxicity of 5-FU and Flutamide after co-treatment with 

ZA is mediated, at least in part, by the control of the expression levels altered miRNA expression levels 

in PC. Particularly, the expression levels of oncogenic miR-18a and tumor suppressor miR-382 are both 

affected by chemotherapeutic co-treatment, with down-regulation or up-regulation, respectively. 
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